Square & Stretch Multigrid for Stochastic Matrix Eigenproblems∗∗

نویسندگان

  • Eran Treister
  • Irad Yavneh
چکیده

A novel multigrid algorithm for computing the principal eigenvector of column stochastic matrices is developed. The method is based on the Exact Interpolation Scheme multigrid approach of Brandt and Ron, whereby the prolongation is adapted to yield a better and better coarse representation of the sought eigenvector. A special feature of the present approach is the squaring of the stochastic matrix—followed by a stretching of its spectrum—just prior to the coarse-grid correction process. This procedure is shown to yield good convergence properties, even though a cheap and simple aggregation is used for the restriction and prolongation matrices, which is important for maintaining competitive computational costs. A second special feature is a novel bottom-up procedure for defining coarse-grid aggregates. Copyright c © 2000 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Mesh Eigenproblems with Multigrid Efficiency

Multigrid techniques can successfully be applied to mesh eigenvalue problems for elliptic differential operators. They allow to compute a few of the smallest eigenvalues and the eigenfunctions within optimal or quasi-optimal computational complexity. A review is given on three multigrid solvers for elliptic eigenproblems. Numerical results are presented for a simple model problem.

متن کامل

A Posteriori Error Estimation for a Preconditioned Algorithm to Solve Elliptic Eigenproblems

This paper presents an a posteriori error estimator for the preconditioned iteration scheme of Bramble, Knyazev and Pasciak to compute the smallest eigenvalues together with its invariant subspace of an elliptic diierential operator. The error estimator is applied both to the nite element space in which the preconditioned iteration is performed (iteration error estimation) as well as to its hie...

متن کامل

Quadratic Eigenproblems Are No Problem

High-dimensional eigenproblems often arise in the solution of scientiic problems involving stability or wave modeling. In this article we present results for a quadratic eigenproblem that we encountered in solving an acoustics problem, speciically in modeling the propagation of waves in a room in which one wall was constructed of sound-absorbing material. EEcient algorithms are known for the st...

متن کامل

Linear and Nonlinear Eigenproblems for PDEs

The workshop discussed the numerical solution of linear and nonlinear eigenvalue problems for partial differential equations. It included the theoretical analysis the development of new (adaptive) methods, the iterative solution of the algebraic problems as well as the application in many areas of science and engineering. Mathematics Subject Classification (2000): 65N25, 65F15, 15A18. Introduct...

متن کامل

Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver

Laplacian matrices of graphs arise in large-scale computational applications such as semi-supervised machine learning; spectral clustering of images, genetic data and web pages; transportation network flows; electrical resistor circuits; and elliptic partial differential equations discretized on unstructured grids with finite elements. A Lean Algebraic Multigrid (LAMG) solver of the symmetric l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010